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Management Summary 

The subject report is composed in the context of the EXTOPIA project that was conducted by 
G.I.M.-Geographic Information Management NV. The EXTOPIA project is an innovation project 
funded by the Ministère de la digitalisation with as main stakeholder the Administration du 
cadastre et de la Topographie du Grand Duché de Luxembourg (ACT).  
The aim of this project was to find the best possible Machine Learning approaches and set up a 
Proof of Concept (PoC) environment that allows to detect topographic objects like buildings on 
the basis of input imagery in varying resolutions as well as their changes, this ranges over a 
variety of visual changes, like new constructions, demolitions and adaptations by comparing 
yearly orthophotos. This PoC had to be operable by the ACT IT specialists in order to be able to 
set up a production system based on the PoC.  
 
The work started from an existing architecture and processing pipeline that GIM developed on 
the basis of the DeepResUNet Deep Learning architecture for semantic segmentation.   
 
The model was initially pretrained on Belgium data and applied on downsampled 1m 
resolution Luxembourgish orthophoto’s and gave reasonable results.   
 
During the project, an iterative approach was followed. Augmentation techniques were 
applied to improve the robustness of the segmentation. The architecture was then further 
improved using complex algorithmic enhancements as spatial attention gates, deep 
supervision, multi-scale pooling and Convolutional Block Attention Modules, which all 
improved the segmentation results. The final results were hence generated using a model with 
all of the above algorithmic enhancements applied and trained using a Luxembourg training 
dataset.   
 
Experiments were conducted with 3 different loss functions. Weighted Binary Cross Entropy, 
Tversky and Dice. The experiments did show that both Tversky and Dice outperform the 
Weighted Binary Cross Entropy.  Which one to select depends on the specific use case. Tversky 
is the best choice if the idea is to map the maximum of uncharted buildings and obtain 
reasonable-quality footprints since its segmentation is less conservative than Dice. As a 
consequence, there will be also more false positives.  Dice on the other hand gives the best 
possible footprints and much less false positives but will also miss some buildings.  
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1 Introduction 

1.1 EXTOPIA PROJECT  

In the context of the continuous update and maintenance of the geographic databases 
managed by the ACT, there is a challenge to automatically identify changes with respect to the 
built-up environment on the basis of yearly acquired aerial imagery. The detection of newly 
constructed buildings, demolished buildings as well as buildings that have undergone 
significant changes in their geometry are all of high interest. Apart from changes to buildings, 
there are also other topographic features for which change detection needs to be performed 
as for instance forest walking paths and other natural topographic elements.  

The ACT Department of the Grand Duchy of Luxembourg is maintaining a database of buildings 
covering the whole country. To keep the database up to date, the ACT is required to identify all 
newly constructed, demolished, or updated buildings. Orthophotos are acquired yearly, 
covering the entire country at a very high resolution. Currently, manual inspection and editing 
are the primary but very laborious approach to maintain the database. Recent advances in 
Earth Observation data processing technologies however demonstrate the feasibility of 
applying alternative techniques. In the frame of the "digital-first" program, the ACT 
Department is continuously looking for improving their processes by means of further 
digitalisation. In this regard, the ACT department is willing to start the introduction of AI-based 
technologies for the database maintenance on the building updates. 

1.1.1 Project Objectives 

Within the context mentioned above, the objective of the EXTOPIA project was to develop a 
Proof of Concept of an Artificial Intelligence (AI) based toolchain that can be used to identify 
building and other changes based on remotely sensed Earth Observation Imagery. This Proof of 
Concept had to be realised with state-of-the-art open-source tools. The project has to be seen 
as a highly innovative R&D project. 

The ACT Department of Grand Duchy of Luxembourg is willing to set up an AI environment 
aiming to identify automatically the newly constructed, changed, or demolished buildings and 
later on for other topographical objects like walking paths in the woods. The project consists of 
a first step towards an automated workflow for the database update. 

The main objectives of the project are the following: 
 

• Provide an evaluation of the Deep Learning technologies that are most suited for the 
detection of objects on ortho-images, with a high potential for expansion to various 
semantic domains; 

• Develop a Deep Neural Network (DNN) capable of being trained for detecting specific 
objects. More specifically, the model should be able to detect all kinds of buildings, in 
rural but especially also in urban situations and should be extensible to other objects; 

• Develop an algorithm to support change detection on the build-up landscape between 
two years; 
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• Propose and implement an approach so that the ACT can improve the system by reporting 
detection errors. 

• The Proof of Concept will be used by the IT Specialists of the customer as the basis for 
deploying a production ready system.  

1.2 ACCRONYMS 

ACT l’Administration du cadastre et de la 
topographie du Grand Duché de 
Luxembourg 

AOI Area of Interest 

CBAM Convolutional Block Attention Module 

CNN Convolutional Neural Networks 

DCNN Deep Convolutional Neural Networks 

DSM Digital Surface Model 

FN False Negatives 

FP False Positives 

GSD Ground sampling distance 

IoU intersection-over-union 

IR Infra-Red 

OBIA Object Based Image analysis 

PCA Principal Component Analysis 

PoC Proof of Concept 

R&D Research and Development 

RGB Red, Green Blue 

TN True Negatives 

TP True Positives 

VHR Very High Resolution 

WBCE Weighted Binary Cross entropy 
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2 Architecture 

2.1 THE BASICS: COMPUTER VISION USING DEEP CONVOLUTIONAL NEURAL 
NETWORKS 

2.1.1 Introduction to DCNN 

Deep Convolutional Neural Networks (DCNNs) are a type of neural network architecture 
designed to amongst other applications extract information efficiently from images. These 
DCNNs are applied heavily in computer vision for both supervised and unsupervised learning 
and are responsible for the explosive progress of the field in the last decade. Like other neural 
networks, DCNNs are typically trained by a gradient descent algorithm on a training dataset 
which may be labelled (containing “ground truth” values) or unlabelled depending on the 
objective. Within DCNNs there are a multitude of variations and architectural choices which 
can improve performance, speed and portability depending on several factors such as the 
particular kind of computer vision task at hand, the available hardware and data, and the 
circumstances under which the network will be deployed to generate results. 

2.2 SEMANTIC SEGMENTATION 

Semantic segmentation refers to the task of assigning every pixel in an image to one of several 

pre-defined categories. It is a generalisation of image classification where the algorithm 

outputs an abstract interpretation of an image rather than a single label which is the case in 

image classification. It is particularly useful in earth observation, where georeferenced rasters 

containing a deconstruction of raw imagery into classes like buildings, roads and trees can be 

generated and used for further analysis. 

Due to the complexity of images, modern semantic segmentation algorithms are based on 

machine learning methods rather than engineered by hand. The most successful of these are 

deep convolutional neural networks.  Machine Learning and especially Deep Learning 

techniques are rapidly replacing the pixel based and Object Based Image Analysis techniques 

that are traditionally applied.  

2.2.1 Methodology to be applied. 

The methodology to be followed when training, evaluating and using CNNs for semantic 
segmentation roughly follows five main steps:  

● DCNN architecture design: selecting and implementing the most appropriate 
architecture for the specific problem in mind, in this case building segmentation, based 
on an existing semantic and instance segmentation models that are documented in 
literature.  

● Training, validation and testing dataset construction: a supervised task like semantic 
segmentation requires a certain amount of training and validation samples: images 
containing buildings with known footprints. Since the validation set is used to evaluate 
algorithm performance, these datasets must be fully separate. A wholly separate 
testing dataset should be created for final quality assessment to prevent accuracy 
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assessments from being biased toward models which were tuned to the idiosyncrasies 
of a particular validation dataset. 

● Model training and hyperparameter optimization: the network is trained using the 
dataset described above. Hyperparameters of the model are then tuned by comparing 
the loss values obtained on the validation dataset using different configurations. 

● Quality assessment: based on the independent testing dataset, a detailed assessment 
is performed where the footprint quality is quantified according to image-level metrics 
(such as intersection-over-union (IoU), precision and recall) and polygon-level metrics 
(per-building footprint IoU distributions, missed-building rates, false-detection rates). 
Based on these results the DCNN architecture and model parameters can be revisited 
in an iterative approach. 

● Inference: the most performant deep neural network trained and evaluated in the 
previous steps is used to generate building segmentation masks on the full set of 
orthoimagery, where ground truth data need not be available.  

 

2.3 THE STARTING POINT: DEEPRESUNET 

The current architectural paradigm for semantic segmentation is the so-called “encoder-
decoder” architecture, consisting of a stack of convolutional and downsampling layers 
intended to learn the important abstract features present at each location in an image (the 
encoder) and a stack of convolutional and upsampling layers intended to interpret these 
features and map them onto to the target classifications at each location (the decoder). 

GIM has experimented since 2018 with several fully-convolutional encoder-decoder type 
network architectures, all recent evolutions of the well-known U-Net (Ronneberger, 2015)- 
itself a successor to SegNet (Badrinarayanan, 2017) which pioneered this design - which were 
highly-performant on public dataset benchmarks.  

Our Deep Learning workflow has undergone several iterations and our current best results are 
with the so-called Deep Residual U-Net architecture, which we implemented based off the 
article Semantic Segmentation of Urban Buildings from VHR Remote Sensing Imagery Using a 
Deep Convolutional Neural Network, published in Remote Sensing in July 2019 (Yaning, 2019) . 
This is capable of producing high-quality segmentation masks (see Figure 1) on a single GPU. 
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Figure 1: “DeepResUNet" Model architecture based on the article Semantic Segmentation of 
Urban Buildings from VHR Remote Sensing Imagery Using a Deep Convolutional Neural 
Network currently implemented for building segmentation. 

Yi, Yaning et al. used this architecture for semantic segmentation of urban buildings from VHR 
remote sensing imagery. As shown in figure 1, it consists of a cascade down-sampling network 
that extracts building feature maps from the input VHR image and an up-sampling network 
that reconstructs the extracted building feature maps back to the same size as the input, 
followed by a softmax classifier. To improve accuracy considerably with increased layer depth 
and mitigate the issue of vanishing gradient, the architecture relies on a residual block 
(ResBlock) as the basic processing unit. Skip connections feed the encoder feature maps to the 
decoder feature maps at each intermediate spatial resolution and are intended to allow the 
network to progressively recover spatially finer information when constructing the output 
segmentation masks. The proposed architecture was evaluated with six other deep learning 
approaches on a dataset of aerial images covering an urban area of Christchurch City, New 
Zealand. With fewer false negatives and false positives, DeepResUnet outperformed the other 
six approaches in the semantic segmentation image of urban buildings. It also had fewer 
parameters than most of the models in competition but required a longer training and 
inference time.  

2.4 FRAMEWORK OVERVIEW 

2.4.1 Overview of functionality 

The PoC tool developed in this project facilitates training and evaluating DeepResUNet-based 
segmentation models on geospatial datasets consisting of VHR RGB orthoimagery and vector 
or raster ground truth data (building footprints) and running inference with these models on 
unseen orthoimagery. 
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2.4.2 Libraries 

The processing pipeline is built on open-source libraries such as: 

• Tensorflow – implementation of segmentation models 

• Dask – data engineering and facilitating processing of larger-than-RAM datasets 

• Sci-kit learn – preprocessing and data engineering 

• Rasterio – raster manipulation and data extraction 

• Geopandas – polygon-level analysis of segmentation results 

• GDAL – dataset preparation, rasterization and polygonization 

2.4.3 Processing chain 

• Input datasets may be declared which consist of georeferenced RGB rasters, with the 
option to provide ground truth polygons either in vector format with ESRI shapefiles, 
or directly as binary rasters with the same georeferencing and transform as the 
corresponding image. 

• Preprocessing consists of extraction of raw image arrays from the input data files and 
their division into normalised patches suitable for consumption by the CNN model. 

• Training facilitates feeding the processed input datasets to a segmentation model such 
that it learns to reproduce the ground truth masks. Here options are provided for 
tuning and enhancing this process, such as configurable image augmentations 
(operations that realistically modify, crop or rotate images at training time to enlarge 
the input data) and hyperparameter selection. 

• Evaluation provides a suite of options for evaluating the performance of a trained 
model on sample Area-of-Interest (AOI) testing datasets, such as segmentation quality 
metrics and polygon quality metrics.  

• Inference allows trained models to be run on any other declared raster datasets, 
producing matching GeoTIFF rasters containing predicted building probability values at 
every pixel. 

 

2.4.4 Hardware 

All results were generated, and experiments carried out on a machine with an NVIDIA Tesla 
V100 accelerator, an 8-core CPU and 32GB of RAM. 

2.5 NEWLY DEVELOPED FUNCTIONALITY  

Here we describe the features that were implemented in the course of the project which 
extended and improved the base framework existing at the conception of the project. 
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2.5.1 Image augmentations 

Image augmentation refers to the process of transforming images in realistic ways. This 
procedure is used widely in machine learning applied to computer-vision to artificially enlarge 
training datasets and make models more robust to training datasets with different statistical 
properties. The most basic example might be applying a horizontal or vertical flip to an image. 
Another example might be changing the brightness or contrast. When such transformations 
are applied during model training, slightly different versions of an image will be seen during 
each epoch, and the model is taught to anticipate these “natural” statistical variations, which 
in turn improves the capability of the model to generalise. 

We expanded our model training pipeline from basic augmentations (horizontal and vertical 
flips applied during training) to more sophisticated hand-engineered and data-driven 
augmentations. These were implemented by utilizing the Albumentations1 library. The 
following existing augmentations were integrated: 

- Random rotation by 90 degrees. This teaches a model a degree of rotation invariance. 

- Random horizontal flip. This teaches a model a degree of reflection invariance. 

- Random homogenous RGB offset with a maximum radius of 15. This teaches a model 
to be robust to small colour normalization shifts in any direction. 

- Random affine transformations (a small rotation and a small translation together). 
These can provide both a degree of rotation invariance and small contextual shifts of 
objects. 

- Random gaussian noise (adding random fluctuations centered about zero to the pixel 
values). This will teach a model a degree of robustness to noisy images. 

- Random gaussian blur. This will provide a degree of robustness to images slightly out-
of-focus. 

- Random contrast shifts. Provides flexibility to sensors producing images with differing 
contrasts. 

- Random brightness shifts. Provides flexibility to images of varying brightness. 

- Random gamma corrections. Provides flexibility to images of varying gamma values. 

 
1 https://github.com/albumentations-team/albumentations 

https://github.com/albumentations-team/albumentations
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-  

- Figure 2 – Mean RGB values for images taken from Luxembourg Belair training area 
for four years. Note certain datasets contain more images with brighter values and 
the colour distributions are dependent on the conditions on the day of capture. The 
lone winter orthophoto (purple) in particular is dimmer and has a slightly broader 
colour distribution. Augmentations such as “FancyPCA” will shift the colour 
normalisation in other images towards these and vice versa, allowing a model to 
more easily learn common features across different datasets. 

 

In addition to these, a data-driven PCA-based colour augmentation (dubbed “Fancy PCA”) 
based on (Krizhevsky, 2012) was implemented to provide colour shifts along the principal 
colour axes of the training datasets. This creates more “realistic” shifts in colour normalisation 
and allows the training procedure to distort the colours of images seen at training time 
towards those of other samples in the training dataset. 
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Figure 3 – Example of augmentations on matching patches of the Luxembourg Belair training 
dataset as seen by the model. The colour normalisation, brightness and sharpness along with 
the spatial orientation of each image differs in multiple configurations during training. 

In initial experiments with 1m spatial resolution data we observed ~15% lower loss values on 
validation data with extensive augmentations enabled compared to the baseline. 

In all subsequent experiments and in generation of results, the extensive augmentations 
described above were used. In Figure 4. we show an example of two models trained with and 
without this augmentation scheme to display the qualitative difference in segmentation mask 
quality. 
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Figure 4 - Examples of baseline DeepResUNet models trained on 1m orthoimagery without 
(top) and with (bottom) augmentations. Source image (left), Ground Truth (middle) and 
predicted (right) are shown. 

2.5.2 Algorithmic improvements to DeepResUNet 

A number of architectural enhancements were implemented to improve the predictive power 
of the DeepResUNet architecture in order to derive the sharpest possible segmentation masks. 

These features take the form of additional modules in the neural network architecture and 
were enabled independently and concurrently during an evaluation phase in which the best 
model was selected. 

2.5.2.1 Spatial Attention Gates 

Spatial attention gates provide a mechanism through which the important regions of the 
encoder feature maps can be enhanced or suppressed depending on the more abstract 
semantic content of the decoder at the corresponding spatial locations. 

The Spatial Attention Gate modules implemented are described in the paper Attention U-Net: 
Learning Where to Look for the Pancreas (Oktay, 2018). 

These use kernel-size one convolutions to project each set of encoder feature maps into a new 
space of “key” vectors at each spatial location, and decoder feature maps into a new space of 
“query” vectors at each spatial location. These feature maps are then used to derive an 
(additive) attention map by adding these and applying a further 1D convolution with sigmoid 
activation. This is then multiplied with the encoder feature maps, adaptively rescaling them 
according to the content of the decoder feature maps. 
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Figure 5 - The Spatial Attention Gate module. x and g are feature maps coming through the 
encoder skip lines and from the deeper decoder stages respectively. These are mapped into 
a key, query space with kernel-size 1 convolutions, added and a ReLU nonlinearity applied to 
the result. A final convolution with sigmoid activation is used to generate a spatial attention 
map which then reweights x. 

 

The spatial attention gates are inserted immediately after each decoder upsampling block and 
intercept the encoder feature maps through the skip lines before these enter the next decoder 
block. 

 

 

Figure 6 - A U-Net with spatial attention gates (red circles) positioned before each 
intermediate decoder block. Our architecture provides the option to insert these in the 
corresponding position in the DeepResUNet model. 

 

These have been demonstrated to improve encoder-decoder type models in various 
segmentation tasks. 
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2.5.2.2 Deep Supervision 

Deep supervision is a mechanism to force each decoder block of the network to take on a 
more concrete role, namely learning to produce outputs which more directly correspond to 
the target segmentation map at that block’s spatial resolution. It is known to improve results 
and speed up training in segmentation tasks and is used heavily in biomedical imaging. 

The version of deep supervision implemented follows the version described in the paper 
Improving CT Image Tumor Segmentation Through Deep Supervision and Attentional Gates 
(Tureckova, 2020). 

 

Figure 7 - A Deep Supervision network implemented in (Tureckova, 2020) - each decoder 
output feature map (blue) is projected into the same space used to generate the final 
segmentation map (green) and these are added (with upsampling). 

 

The version implemented captures the output of the intermediate decoder feature maps and 
projects these into the same (channel) space as the final output feature maps used to generate 
the segmentation (before application of softmax/sigmoid). The segmentation map produced is 
calculated by applying the final activation to the sum of all of these intermediate decoder 
feature maps upsampled to the same resolution as the final decoder feature map, so that each 
decoder block learns to make a direct contribution to the output class probabilities. 

Note that other versions of deep supervision directly generate multiple output segmentation 
maps (at different spatial resolutions) and train directly on the ground truth mask resampled 
to match these. 

Deep supervision has been shown to speed up training and provide small performance 
benefits. 

 

2.5.2.3 Multi-scale pooling 

Multi-scale pooling can have slightly different meanings depending on the context. The version 
implemented here makes the input image available to the network encoder at multiple spatial 
resolutions through downsampling. This way each stage of the network encoder has access to 
both the feature maps of the previous encoder layer (which access the original image 
indirectly) and to the image itself directly, resampled to the spatial resolution of each encoder 
block. 
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Input pyramid pooling is implemented as in the paper A Novel Focal Tversky loss function with 
improved Attention U-Net for lesion segmentation (Abraham, 2019). 

 

Figure 8 - Network architecture with input pyramid pooling (blue-gray blocks on the left), 
spatial attention gates and (another variant of) deep supervision as implemented in 
(Abraham, 2019). The input image is downsampled and fed directly to each encoder block at 
intermediate stages of the network. 

Each intermediate encoder block is preceded by an additional set of convolutional filters which 
generate feature maps from the coarsened input image. These coarse feature maps are 
concatenated with the output of the previous encoder block and these together form the 
inputs of the encoder block. 

In principle this addition should allow the model to learn to leverage aggregated larger-scale 
information in the input image. This has been shown to provide small performance benefits. 

2.5.2.4 Convolutional Block Attention Module (CBAM) 

The CBAM module is in essence a simplified form of self-attention which enables a set of 
feature maps (from the output of a residual block) to calculate channel and spatial attention 
maps for reweighting themselves, enhancing important channels and spatial regions based on 
the global feature map distributions. 

CBAM is implemented according to the paper CBAM: Convolutional Block Attention Module 
(Woo, 2018). 
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Figure 9 - The channel and spatial attention modules making up the CBAM. The channel 
module passes a vector of the max and average values of each channel across the whole 
spatial domain through an MLP and learns a channel-wise reweighting with a sigmoid 
activation function. The spatial attention module performs a global max and average pooling 
operation to derive two channel feature descriptors across the spatial extent of the feature 
maps which are passed through a sigmoid convolution to derive a spatial attention map. The 
kernel size of the final convolution is a hyperparameter which provides a degree of context-
awareness in the derivation of the attention values. 

 

The channel and spatial attention maps reweight the feature maps sequentially, i.e. the input 
feature maps are first used to calculate channel attention maps, the channels are reweighted, 
and these reweighted feature maps are used to calculate spatial attention which reweights the 
whole set (spatially) one more time. 

 

Figure 10 - The CBAM block as positioned in a residual block; i.e. as a feature map 
postprocessing step. 

These blocks are quite lightweight (due to the channel and spatial pooling operations) and the 
dynamic reweighting capability has been shown to lead to performance gains in various 
computer vision tasks.  

2.5.3 Evaluation of different loss functions 

During our experiments, we trained models to produce segmentation masks guided by three 
different loss (or “objective”) functions. These differ in how they measure the quality of a 
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predicted segmentation mask and prioritise slightly different objectives. The original loss 
function utilized in the segmentation framework, the adaptive weighted binary cross entropy, 
was extended by two additional loss functions for this project. Each of these is described 
below. 

 

2.5.3.1 Adaptive Weighted Binary Cross Entropy 

This loss function (for shorthand, “WBCE”) is a generalization of binary cross entropy to 
unbalanced data (different numbers of foreground and background pixels, here buildings and 
non-buildings). The loss function is as follows: 

𝐿𝑊𝐵𝐶𝐸 = −
1

𝑁
∑ wyn log pn

N

n=1

+ (1 − yn) log(1 − pn) 

Here 𝑁 denotes the number of pixels in the image indexed by 𝑛, 𝑦𝑛 the binary building 
probability in the ground truth (0 or 1) and 𝑝𝑛 the foreground probability output by the 
network. The weight 𝑤 is derived on a per-image basis according to the formula: 

w =
y− + ϵ

y+ + ϵ
 

Where 𝑦− = ∑ (1 − 𝑦𝑛)𝑁
𝑛=1  and 𝑦+ = ∑ 𝑦𝑛

𝑁
𝑛=1 , and represents the relative fraction of the 

image occupied by background with respect to foreground. This rebalances the loss adaptively 
so that erroneously labelled foreground pixel values are punished more heavily if they occupy 
a smaller total portion of the image, and the degree of extra punishment is equal to the ratio 
of background to foreground pixels. ϵ is a small numerical factor ~ 0.00001 to prevent division 
by zero in case there are only background pixels in the image. 

Since this loss is linear in the pixels (the summation over n), it does not explicitly address the 
“correctness” of global structure, only individual pixels. This results in a degree of “fuzziness” 
in predicted segmentation masks which must be mitigated by thresholding. It Is nonetheless a 
commonly used function for training image segmentation models. The upside of this situation 
is that the gradients of the loss function are relatively simple which makes training a model 
with this loss function easier. 

2.5.3.2 Dice Loss 

The Dice loss function is based on the Dice coefficient, a segmentation quality metric, which 
applied to the binary case takes the form: 

𝐷 =
𝑇𝑃

𝑇𝑃 + 1/2(𝐹𝑃 + 𝐹𝑁)
 

Where TP, FP and FN refer to True Positives, False Positives and False Negatives respectively. 
Since these strictly speaking only exist for binary variables (the neural network outputs 
continuous probabilities 𝑝𝑛 ∈ [0,1]), continuous-valued proxies are used to these values: 
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𝑇𝑃 = ∑ 𝑦𝑛𝑝𝑛

𝑁

𝑛=1

 

𝐹𝑃 = ∑(1 − 𝑦𝑛)𝑝𝑛

𝑁

𝑛=1

 

𝐹𝑁 = ∑ 𝑦𝑛(1 − 𝑝𝑛)

𝑁

𝑛=1

 

The loss function itself is simply: 

𝐿𝐷𝑖𝑐𝑒 = 1 − 𝐷 

Since this loss function is nonlinear in the pixels (its value depends on the global properties of 
the segmentation since it uses the total frequency of true and false positives and false 
negatives to derive a summary ratio) it produces qualitatively different masks to the weighted 
binary cross entropy, and these tend to contain more contiguous objects and very little “fuzz”. 
It also intrinsically weights false positives and negatives the same. The downside of its more 
complicated functional form is that the gradients of the loss are more complex which can 
make training models with this loss slower and more difficult.  

2.5.3.3 Tversky Loss 

The Tversky loss is a generalization of the Dice loss based on the Tversky Index. This allows one 
to inject weighting factors which pushes a model toward performing better at reducing false 
positives or false negatives. The Tversky index has the form: 

T =
𝑇𝑃

𝑇𝑃 + α𝐹𝑁 + β𝐹𝑃
 

Where α, β ∈ [0,1] are weighting factors subject to the constraint α +  β =  1. It reduces to 
the Dice loss when the weighting factors are equal to one half. 

The Tversky loss is simply: 

𝐿𝑇𝑣𝑒𝑟𝑠𝑘𝑦 = 1 − 𝑇 

In our experiments we used α =  0.7 and β = 0.3 to guide models to prioritise minimizing false 
negatives (i.e. to not miss pieces of buildings). This should result in more accurate footprints 
for buildings that are detected, but at the cost of increasing the rate at which spurious 
buildings are detected (false positives). 

The Tversky loss, and gradients thereof, have a slightly more complex functional form owing to 
the different weighting factors than the Dice loss, which renders training models with this 
more difficult. 
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2.5.4 Polygonisation  

In addition to exploring image-level segmentation quality metrics, binary segmentation masks 
were converted into polygon-level results using GDAL’s polygonisation algorithm (based on 
pixelwise 4-connectedness). This allows a direct comparison of ground truth vector data and 
predicted vector data, and the identification of buildings segmented by a given model with 
buildings present in ACT’s building database. 

 

Figure 11 - Polygon-level results (right) compared to ground truth (left) for AOI 3 generated 
by the baseline 1m spatial resolution model with no architectural enhancements. 

A number of quality metrics and classifications were developed for quantitative comparison of 
polygon-level results and integrated in the codebase for future use by ACT for evaluating 
model performance. These will be shown in section 3. 

2.6 DATASETS USED  

2.6.1 ACT orthoimagery  

The main training datasets used throughout experiments consisted of a cut-out of four 20cm 
GSD orthophotos and corresponding ground truth building polygons provided by ACT. 

These were obtained from the 2017 (summer), 2018 (summer) and 2019 (summer) regular 
orthophoto campaigns along with the 2019 (winter) “true” orthophoto with zenith angle of 
~90 degrees. These each covered the same region of Belair, and each spanned in the region of 
ten square kilometres. 



  24 75 

 

Figure 12 - Belair training area taken from the 20cm GSD ACT orthophotos. Top: 2017 
(summer), 2018 (summer). Bottom: 2019 (summer), 2019 (true, winter) 

2.6.2 Belgium orthoimagery  

In initial experiments before the Belair training dataset was prepared, preliminary results were 
calculated based on a DeepResUNet model trained on 2015 and 2016 (winter) orthophotos of 
Belgium (25 cm GSD, downsampled to 1m for Flanders and Wallonia). Ground Truth building 
data was provided by GIM. 

2.6.3 ISPRS Potsdam 

The ISPRS Potsdam Dataset is a publicly available 5cm GSD IR+RGB true orthophoto + DSM 
segmentation dataset with annotated ground truth for buildings (alongside other objects such 
as vegetation, impervious surfaces and cars). A 20cm binary building segmentation dataset 
was extracted from this by downsampling and discarding the additional classifications to 
match the structure of the ACT Belair training dataset. 

https://www2.isprs.org/commissions/comm2/wg4/benchmark/semantic-labeling/
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Figure 13 - The ISPRS Potsdam segmentation dataset (left, IR-R-G bands) with ground truth 
building classes annotated in blue (right). A DSM is also included (middle) which was not 
used here. 

2.6.4 DSM 

ACT also made available a DSM of the country of Luxembourg based on a LiDAR flight. This was 
in the end not used for the following reasons: 

- DSM capture frequency is infrequent and out-of-sync with respect to the yearly-
orthophoto captures. This would limit the applicability of the prospective data fusion 
model and lead to a situation where the increased accuracy could only be taken 
advantage of every few years. 

- Based on existing literature performance gains would only be at the few percent level.   

Given the limited applicability and performance gains expected from a complex data fusion 
orthophoto + DSM segmentation model and the major effort required to implement it, it was 
decided to not implement it in the course of this project.  
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3 Overview of experiments performed 

3.1 AREAS-OF-INTEREST 

 

Figure 14 – AOIs 1-5 (top to bottom, left) along with the initial 1m baseline DeepResUNet 
model results with weighted binary cross entropy (middle) and ground truth (right). 
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All models were benchmarked on a testing dataset of five AOIs chosen by ACT to represent 
diverse urban and rural buildings across Luxembourg. 

Ground truth data for these AOIs was accurate as of 2018, although orthoimages were 
available for subsequent years (where new buildings may have appeared or old ones 
disappeared). We show results and metrics for this year since the ground truth is most reliable 
here. 

3.2 EXPERIMENTS AT 1M SPATIAL RESOLUTION 

In the beginning of the project baseline results were generated using an existing unmodified 
DeepResUNet model trained on Belgian orthophotos from 2015 and 2016 downsampled to 1m 
using the weighted binary cross entropy loss function. 

3.2.1 Architecture  

The architecture used to generate the initial results was the baseline DeepResUNet described 
in (Yaning, 2019). 

3.2.2 Training data  

Training data consisted of Belgian publicly available orthophotos from 2015 and 2016 with 
ground truth building polygons provided by GIM. These were relatively low resolution, being 
resampled from 25cm GSD to 1m GSD before training. The model was trained using the 
weighted binary cross entropy loss function, using a random 10% of the patches making up 
these datasets as validation data. Initial learning rate was set to 0.001 with a decay of 50% 
after two epochs of validation loss stagnation until a minimum of 10^-5. 

3.2.3 Inference data  

Inference was run on the five Luxembourg AOIs downsampled to 1m spatial resolution, and 
segmentation and polygon-level quality metrics derived and collected. 

3.2.4 Postprocessing 

Binary segmentation masks were obtained by thresholding the segmentation model outputs 
(in each case, the raw results are floating point building probabilities for every pixel in the 
range [0,1]). For this Otsu’s method was used to derive an adaptive threshold per AOI, leading 
to values in the range 0.45-0.5. Polygonisation was carried out on each AOI on these 
thresholded results using GDAL’s 4-connectedness polygonization algorithm. 
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3.2.5 Results 

3.2.5.1 Segmentation results 
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Figure 15 - Confusion map for the five AOIs during 2018 using the 1m DeepResUNet model 
trained on Belgian ortho data with the weighted binary cross entropy loss. White and black 
pixels represent true positives and negatives respectively. Red and green pixels represent 
false positives and negatives respectively. 

In Figure 15 confusion maps are presented for the five areas of interest. The predominant 
kinds of errors are false positives (red). These can manifest as overestimated building 
footprints (this can be partially traced back to the effect of binarizing footprints at low spatial 
resolution; pixels which would be partially occupied by buildings when viewed at a higher 
spatial resolution are considered simply to be buildings). The low spatial resolution also leads 
to smaller gaps between buildings at the scale of a few pixels to be erroneously counted as 
buildings, effectively merging together separate buildings. 

 

 

 

 

 

 

 

 

 

 

Figure 16 - post-thresholding segmentation metrics per AOI for the 1m model. The 
predominance of FP-type errors can be seen in the low precision values (purple) compared 
to the recall values (green). The Jaccard Index (or Intersection-over-Union) in yellow 
provides an overall segmentation quality metric which is stable around just under 0.6 across 
each AOI. 

 

3.2.5.2 Polygon- level results 

The image-level binary segmentation results were polygonised using GDAL in order to 
investigate the quality on the level of individual buildings, and to understand the qualitative 
nature of the segmentation errors when translated to a group of polygons to be compared to 
ground truth. 

An important metric in this analysis is the Intersection-over-Union (or IoU). For two polygons, 
this is defined as the ratio of the area of their intersection to the area of their union (the total 
area spanned by both). The Jaccard Index is a synonym for this when applied to whole-image 
level (i.e. where one is comparing two segmentation masks in their entirety). An IoU of 1 
implies perfect alignment of polygons, while an IoU of 0 implies the two shapes do not overlap 
at all. 
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Figure 17 – Raw polygon-level results for the 1m model on the five AOIs. In AOI 1 (top) the 
densely packed buildings are merged into one larger shape. Building footprints tend to be 
overestimated in size. 
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3.2.5.3 Categorisation of polygon-level results 

In order to quantify and classify the polygon-level results, a number of additional metrics were 
calculated by comparing the ground truth to the predicted polygons. These are more complex 
than the pixel-level categories of TP, TN, FP and FN. It is useful to define the following cases: 

1. Single match refers to the cases where a reference polygon (either in the set of ground 
truth polygons or in the set of predicted polygons) intersects exactly one polygon in 
the other set. In these cases, we can calculate the IoU of the pair of polygons. 

a. If the reference polygon is in the ground truth set, a single match with a 
predicted polygon can be either: 

i. A unique match, where the predicted polygon intersects no other true 
polygons.  

ii. Undersegmentation, where the single matching predicted polygon 
intersects other true polygons.  

b. If the reference polygon is in the predicted set, a single match with a ground 
truth polygon can be either: 

i. A unique match, where the ground truth polygon intersects no other 
predicted polygons. 

ii. Oversegmentation, where the ground truth polygon intersects other 
predicted polygons. 

2. No match refers to the cases where a reference polygon (either in the set of ground 
truth or predicted polygons) intersects no polygons in the other set. 

a. If the reference polygon is in the ground truth set, this represents a missed 
building (or equivalently a false negative). 

b. If the reference polygon is in the predicted set, this represents a false 
detection (or equivalently a false positive). 

3.  Multiple match refers to the cases where a reference polygon (either in the set of 
ground truth or predicted polygons) intersects multiple polygons in the other set. 

a. If the reference polygon is in the ground truth set, this again represents 
Oversegmentation (one real building encompassing multiple predicted 
buildings). 

b. If the reference polygon is in the predicted set, this again represents 
Undersegmentation (one predicted building encompassing multiple real 
buildings). 
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3.2.5.4 Global distributions per AOI 

Here we can show some global properties of the segmented polygons for each AOI. 

 

 

 

 

 

 

 

 

 

 

 

 

In Figure 18, the missed building rate for the 1m model is shown. As will be a recurring theme, 
AOI 2 (“Polygone 2”) results are notably worse than the other AOIs. This is due to the 
complexity of these buildings; several are multi-tiered with roofs at different heights, others 
have open spaces which are difficult to distinguish by eye from roofs. Nonetheless even at 1m 
spatial resolution, the miss rate is low for the remaining AOIs at the 3-7% range. 
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In Figure 19, the fraction of true buildings with one matching predicted building is shown. The 
difference between each bar and 1 represents the oversegmented or missing true buildings. In 

Figure 19 – Fraction of true polygons with one matching predicted polygon (unique matches and 
undersegmented buildings) 

Figure 18 - Fraction of missing buildings in each AOI for the initial 1m model trained on Belgian 
ortho data with WBCE loss. 
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each case apart from AOI 2 we can infer that oversegmentation is a very minor issue at low 
spatial resolution, which we can confirm in Figure 20. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Figure 21 we plot the ground truth and predicted polygons in AOI 1 for the case where a 
single predicted polygon overlaps a given ground truth polygon, and colour the predicted 
polygons according to their average IoU with all the true buildings they intersect. Here it’s 
clear that the most significant problem at this spatial resolution is the undersegmented 
buildings. These occur in situations with densely packed buildings with little space between. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20 - fraction of oversegmented buildings at 1m spatial resolution for each AOI using the initial 
model. 

Figure 21 - Predicted polygons which intersect true polygons coloured by average IoU with the 
buildings they intersect. Undersegmented buildings appear as purple-blue and occur where a 
single predicted polygon erroneously contains multiple true buildings. 
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In Figure 22 we can observe a qualitatively different scenario. In a rural setting such as AOI 3 
where buildings are more separated, undersegmentation is rare and most predicted polygons 
are unique matches with corresponding true polygons. In these cases, the footprint quality as 
measured by IoU is typically in the 50-60% percent range, with the predicted polygons in 
general being too large. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22 - Predicted polygons of AOI 3 where these intersect one or more true polygons, coloured by 
average IoU. 

Figure 23 - IoU distributions for true polygons which match one predicted polygon by AOI. The y-axis 
represents the value of the IoU in bins of 10%, while the colour represents the fraction of buildings in 
that IoU range. 
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Figure 23 summarises the situation: for most AOIs the IoU is low due to the predominance of 
undersegmented buildings. In AOI 3 the majority of buildings are in the 50-60% IoU range. We 
should hope for distributions in each AOI peaked strongly at high IoU. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

One can conclude that 1m spatial resolution is not sufficient for distinguishing individual 
building polygons except for in those cases where buildings are well-separated. When this is 
the case the footprint quality is mediocre and tends to overexaggerate building sizes. 

3.3 EXPERIMENTS AT 20CM SPATIAL RESOLUTION  

3.3.1 Architecture  

The procedure of generating AOI quality metrics was repeated using the baseline 
DeepResUNet model with WBCE loss in order to perform a like-for-like comparison with 1m 
results. 

Following the implementation of the architectural enhancements detailed in section 2.5, a 
period of hyperparameter tuning and model selection was carried out whereupon the best-
performing model was selected based on validation data metrics using each of the three loss 
functions put forward. These models were used to generate final, improved results which are 
also shown here. 

In each case the best-performing model included all of the additional architectural elements 
(spatial attention gates, deep supervision, multi-scale pooling and CBAM modules on each 
residual block). 

The optimal initial learning rate found in these experiments was 10^-4 for every loss function, 
with a reduction of a factor of 50% after 2 epochs of validation loss stagnation until a minimum 
value of 10^-6.  

Figure 24 - Status distribution for all AOIs for polygons predicted by 1m DeepResUNet. Around half of 
these are undersegmented (i.e. intersect multiple true buildings). A little over one quarter are unique 
matches and a little under one quarter are non-matches (i.e. false detections) 
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3.3.2 Training data  

In all 20cm experiments training data consisted of the Luxembourg (Belair) training sample for 
each of the years 2017, 2018, 2019 and 2019 (winter true ortho – resampled from 10cm to 
20cm), along with the ISPRS Potsdam dataset. Ten percent of the patches constituting this 
combined training dataset were selected at random and separated off to be used as validation 
data during model training. 

3.3.3 Inference data  

Inference was run on the five Luxembourg AOIs at 20cm native spatial resolution (resampled 
from 10cm in the case of 2019 winter), and segmentation and polygon-level quality metrics 
derived and collected.  

In the case of the best weighted binary cross entropy model, results for the entire country 
were additionally generated. 

3.3.4 Postprocessing 

Binary segmentation masks were again obtained by thresholding the segmentation model. For 
this Otsu’s method was used to derive an adaptive threshold per AOI. Polygonisation was 
carried out on each AOI on these thresholded results using GDAL’s 4-connectedness 
polygonization algorithm. 

3.3.5 Results 

3.3.5.1 Segmentation results – DeepResUNet + WBCE loss 

In Figures 24-28 the confusion maps for each AOI are presented, which may be compared with 
the 1m spatial resolution results generated by the same architecture. 

. 

Figure 25 - Confusion map for AOI 1, 20cm baseline DeepResUNet model. Again TP/TN white/black 
respectively and FP/FN red/green respectively. 
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The predominant error type with weighted binary cross entropy is again the false positive kind, 
although the higher spatial resolution significantly reduces the “exaggerated” footprints seen 
at 1m. 
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Figure 26 - Confusion map for AOI 2, 20cm baseline DeepResUNet model. Oversegmentation is a 
more visibly significant problem here than at 1m and the increased spatial resolution does not 
significantly improve segmentation quality. This is likely a result of such atypical multi-tiered 
buildings lacking in training data. 

Figure 28 - Confusion map for AOI 3, 20cm baseline DeepResUNet model. Footprint exaggeration is 
still an issue for this loss function although this is significantly mitigated with respect to 1m. 
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With the exception of AOI 2 (Figure 26) 20cm spatial resolution represents a huge qualitative 
improvement to 1m, while taking a factor of ~20-25 longer to both train this model and run 
inference. Nonetheless 20cm inference on the country of Luxembourg was possible in 
approximately 12 hours on the ACT hardware provided. 

 

 

Figure 30 - Confusion map for AOI 5, 20cm baseline DeepResUNet model trained with the WBCE loss 

Figure 29 - Confusion map for AOI 4, 20cm baseline DeepResUNet with the WBCE loss 
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In Figure 31 the global AOI-level quality metrics are shown. These reflect the significantly 
reduced false positive rate with respect to 1m. 

 

 

 

 

 

 

 

 

 

 

3.3.5.2 Segmentation results – DeepResUNet + all enhancements + WBCE loss 

Here we present the results for the best trained model with architectural enhancements in 
place. For the particular case of WBCE, we note that the distribution of predicted building 
probabilities was shifted higher than the baseline model and an appropriately higher threshold 
should be selected to accommodate this. In the confusion maps (Figures 32-36) we used the 
same adaptive thresholding scheme (Otsu’s histogram method, scaled up to be more 
conservative by a factor of 1.25, typically resulting in a threshold in the region ~0.57) as in 
previous experiments which resulted in a slight decline in quality. The calculation of the 
segmentation metrics was repeated by increasing this scale factor to 1.5 resulting in a 
threshold ~0.7 which eliminated false positives produced better results (see Figure 37).  

 

 

 

 

 

 

 

 

Figure 31 - Per- AOI segmentation metrics for the 20cm baseline DeepResUNet model. With 
the exception of  AOI 2, Jaccard Index (global IoU) values are in the 65-70% region (up from 
<~60%) while precision values are in the 70-80% region (up from 60%). 

Figure 32 - Confusion map for AOI 1 for the best-performing 20cm model trained with the WBCE 
loss function 



  40 75 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 33 - Confusion map for AOI 2 for the best-performing 20cm model trained with the WBCE 
loss function 

Figure 34 - Confusion map for AOI 3 for the best-performing 20cm model trained with the WBCE 
loss function 

Figure 35 - Confusion map for AOI 4 with the best-performing 20cm model trained with the WBCE 
loss function 
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It’s worth noting here that the disparity in validation losses observed between the baseline 
and best WBCE models (0.272 and 0.186 respectively) does not translate into equivalently 
significant gains in the AOI testing dataset metrics. This is likely due to the more complex 
model being able to better learn to leverage the subtleties of the Belair training dataset but 
failing to generalize this understanding well to the testing datasets. In general, more complex 
models contain more parameters and interlocking mechanisms, and thus require more data to 
train. It is likely that the disparity between the baseline and best model architectures would 

Figure 36 - Confusion maps for AOI 5 with the best-performing 20cm model trained with WBCE loss 

Figure 37 - final segmentation metrics for the best-performing 20cm WBCE model. 
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grow significantly in the presence of a larger and more diverse training set containing different 
samples from Luxembourg.  

3.3.5.3 Segmentation results – DeepResUNet + all enhancements + Tversky loss 

Here we present the results for the best trained model with architectural enhancements in 
place. In the case of the Tversky loss, the Otsu thresholding scheme was kept, although in 
practice the Tversky and Dice losses produce extremely bimodal distributions, i.e. building 
regions are either identified with a particular shape with a very high probability approaching 1 
or are entirely absent with probability approaching 0. This renders the choice of threshold 
nearly meaningless. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 38 - Confusion map for  AOI 1 with the best-performing model trained with the 
Tversky loss 

Figure 39 - Confusion map for  AOI 2 with the best-performing model trained with the Tversky loss 
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Another point worth of note is the stability of the training. As mentioned in section 2.5, this 
loss and gradients thereof have a considerably more complex functional form than the 
weighted binary cross entropy. This can cause the gradient descent algorithm to struggle to 
navigate a highly oscillating loss surface. We observed around three training experiments out 
of ten where training destabilized and the loss diverged. Results could likely be improved 
further by experimenting with more sophisticated learning rate schedulers, or tuning the initial 
learning rate more finely. 

 

 

Figure 40 - Confusion map for AOI 3 with the best-performing model trained with the Tversky 
loss 

Figure 41 - Confusion map for  AOI 4 for the best-performing model trained with the Tversky loss 
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In Figures 38-42 the confusion maps for the best-performing Tversky loss model at 20cm 
spatial resolution are presented. In our experiments the architectural improvements 
represented a decline in validation loss from 0.17 to 0.13 with respect to the baseline 
DeepResUNet. One can see that these are a qualitative improvement on the weighted binary 
cross entropy model, particularly in the reduction of false positives. Nonetheless these are still 
the most predominant error-type which appears for this loss function. 

 

 

 

 

 

 

 

 

Nonetheless, the Tversky loss results are quantitatively a significant improvement on the 
weighted binary cross entropy (see Figure 43). In particular the precision values touching the 
80% mark in the four more typical AOIs improves drastically in some cases on the WBCE results 
shown in Figure 37. 

Figure 42 - Confusion map for  AOI 5 for the best-performing model trained with the Tversky 
loss 

Figure 43 - Final segmentation metrics per  AOI for the best-performing model trained with the 
Tversky loss. 
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3.3.5.4 Segmentation results – DeepResUNet + all enhancements + Dice loss 

Here we present the results for the best trained model with architectural enhancements in 
place using the Dice loss function. Similarly, to the Tversky loss and for the same reasons, the 
choice of threshold is unimportant here. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Figures 44-48 the confusion maps are presented for the five AOIs with the best model 
trained with the Dice loss. Due to time constraints, we did not train a baseline DeepResUNet 
model with this loss function. The minimum validation loss reached in our experiments was 
0.15. 

Immediately of note is the trading away of false positives (in red) for false negatives (in green). 
This can be traced back to the equal weighting factors for these types of error (in contrast to 
Tversky, where FNs were more severely punished) in the loss function. As a result, for the 
more typical AOIs (1, 3-5) most building footprints are very accurate and not exaggerated, 
although a larger fraction is missed entirely. Smaller, isolated false positives are also much less 
frequent. 

 

Figure 44 - Confusion map for  AOI 1 with the best-performing model trained with the Dice loss 

Figure 45 - Confusion map for  AOI 2 for the best-performing model trained with the Dice loss 
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Figure 46 - Confusion map for  AOI 3 for the best-performing model trained with the Dice loss 

Figure 47 - Confusion map for AOI 4 for the best-performing model trained with the Dice loss 
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In Figure 49 the overall quality metrics for each AOI are presented. The equal prioritization of 
FP and FN error-types manifests in the precision and recall (purple and green respectively) 
being more equally balanced than with the Tversky loss. The overall quality indicator (the 
Jaccard Index in yellow) is very similar. If one ignores the artefact caused by the presence of 
the border in AOI 4, the overall quality measured by the Jaccard Index is slightly better on 
average. 

 

 

 

 

 

 

 

 

 

 

While the quality metrics for the Dice and Tversky losses are similar, one would expect to see 
the differences emerge more prominently in the polygon-level analysis, as larger false positives 
rates (Tversky) are more likely to merge buildings and create undersegmentation, while higher 
false negative rates (Dice) are more likely to cause missed buildings and oversegmentation. 

Figure 48 - Confusion map for  AOI 5 with the best-performing model trained with the Dice loss 

Figure 49 - Overall segmentation quality metrics per  AOI for the best-performing model 
trained with the Dice loss 
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3.3.5.5 Polygon- level results – DeepResUNet + WBCE loss 

Here we present the polygon level results for the baseline DeepResUNet model on the five 
testing AOIs. 

In Figures 50-54, colour-coded representations of the predicted polygons are shown where the 
colours indicate whether that polygon was a unique match, undersegmented, oversegmented, 
a non-match (false detection) or ambiguously segmented. Once again undersegmentation is 
the predominant error-type and is prominent in dense areas with small spaces between 
buildings. These were not well-represented in the Belair training dataset, so it is likely that this 
issue could be alleviated by providing ground truth for these kinds of urban environments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 50 - Predicted polygons (right) and ground truth (left) for AOI 1 for the baseline 
DeepResUNet model trained with the WBCE loss function. Predicted polygons are colour-
coded by status: light blue for unique matches, gray for undersegmented, brown for 
oversegmented, green for no match (false detection) and blue for ambiguously segmented. 

 

 

 

Figure 51 -- Predicted polygons (right) and ground truth (left) for  AOI 2 for the baseline 
DeepResUNet model trained with the WBCE loss function. Predicted polygons are colour-
coded by status: light blue for unique matches, pink for undersegmented, red for 
oversegmented, and blue for no match (false detection). 



  49 75 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 52 - Predicted polygons (right) and ground truth (left) for  AOI 3 for the baseline 
DeepResUNet model trained with the WBCE loss function. Predicted polygons are colour-coded 
by status: light blue for unique matches, pink for undersegmented, red for oversegmented, and 
blue for no match (false detection). 

Figure 53 - Predicted polygons (right) and ground truth (left) for  AOI 4 for the baseline 
DeepResUNet model trained with the WBCE loss function. Predicted polygons are colour-
coded by status: light blue for unique matches, gray for undersegmented, brown for 
oversegmented, green for no match (false detection) and blue for ambiguously segmented. 



  50 75 

 

 

 

 

 

 

 

 

 

 

 

 

In Figure 55 the status distribution of the predicted polygons across all AOIs is shown. Around 
40% of the polygons derived are unique matches with ground truth, while undersegmentation 
is still a significant issue affecting around 35% of the predicted buildings. The 20cm results still 
represent a significant improvement over the 1m model where undersegmentation affected 
the majority of buildings predicted. 

 

 

 

 

 

 

 

 

 

 

 

Figure 54 - Predicted polygons (right) and ground truth (left) for  AOI 5 for the baseline DeepResUNet 
model trained with the WBCE loss function. Predicted polygons are colour-coded by status: light blue 
for unique matches, pink for undersegmented, red for oversegmented, and blue for no match (false 
detection). 

Figure 55 - Global status distribution for the predicted polygons for the baseline 
DeepResUNet model trained with WBCE loss 
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In Figure 56 the fraction of missed buildings per AOI is depicted. This does not improve 
significantly with respect to the 1m results but is still typically in a reasonable range of 4-10%. 

In Figures 57-61 the per-predicted-building segmentation quality is shown for those cases 
where the predicted polygon matches at least one in the ground truth polygon. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 56 - Fraction of missed buildings per  AOI for the baseline DeepResUNet model trained with 
the WBCE loss 

Figure 57 - Predicted polygons which uniquely intersect true polygons in AOI 1, coloured by 
average IoU with the buildings they intersect. Undersegmented buildings appear as purple-
blue and occur where a single predicted polygon erroneously contains multiple true buildings. 
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Figure 58 -- Predicted polygons which uniquely intersect true polygons in  AOI 2, coloured by average 
IoU with the buildings they intersect. Footprint quality is again poor in this  AOI due to the complex 
multi-tiered nature of the buildings. 

Figure 59 - Predicted polygons which uniquely intersect true polygons in  AOI 3, coloured by 
average IoU with the buildings they intersect. These well-separated rural buildings again have 
the best match quality, often around 80%. 
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In Figure 63 the global IoU distributions are shown for each AOI. These improve significantly on 
the 1m results, with the highest density of buildings in the 70-80% range with the exception of 
AOI 2. 

Figure 60 - Predicted polygons which uniquely intersect true polygons in AOI 4, coloured by 
average IoU with the buildings they intersect. 

Figure 61 - Predicted polygons which uniquely intersect true polygons in AOI 5, coloured by 
average IoU with the buildings they intersect. 
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3.3.5.6 Polygon- level results – DeepResUNet + all enhancements + WBCE loss 

Here the polygon-level results for the best-performing WBCE model with all architectural 
enhancements are shown. For the sake of brevity only the aggregate predicted polygon 
distributions are shown here, as the polygon-level results are qualitatively similar to those in 
the previous section (the baseline DeepResUNet) and should be improved by re-thresholding 
which couldn’t be performed again for the analysis here due to time constraints. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 63 - IoU distributions of predicted buildings which match at least one ground truth building 
per  AOI. 

Figure 64 - Fraction of missed buildings by  AOI for the best-performing WBCE model. These 
are relatively unchanged with respect to the baseline 20cm result and the 1m results. 
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In Figure 65 the global predicted building status distribution is shown. In this case the no-
match rate is slightly higher than the baseline model (more false detections). This difference 
will likely be eliminated by more aggressive thresholding. 

 

 

 

 

 

 

 

 

 

In Figure 66 the global IoU distributions are shown for predicted buildings which match at least 
one true building. These are similar to those of the baseline DeepResUNet model, although the 
density of buildings in the peak IoU regions of 60-80% is slightly lower.  

3.3.5.7 Polygon- level results – DeepResUNet + all enhancements + Tversky loss 

The results for the best-performing model trained with the Tversky loss function on polygon-
level predictions are shown here.  

In Figures 67-71 colour-coded representations of the predicted polygons are again shown. 
Undersegmentation remains the most prominent error for this loss function, but the rate at 
which it occurs is visibly less than for the WBCE. 

Figure 65 - Status distributions for the best-performing model (with suboptimal threshold) trained with the 
WBCE loss function. 

Figure 66 - IoU distributions for predicted polygons which match at least one true polygon per  
AOI for the best-performing model trained with the WBCE loss function. 
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Similarly, to the WBCE loss, the Tversky model struggles with very large buildings such as is 
visible in the southwest of AOI 1. This situation may be partly remedied by improving their 
representation in the training dataset (such large industrial buildings were lacking in the Belair 
training set). While the degree of undersegmentation is still significant, many cases are also 
“almost” correct, i.e. two polygons merge by merit of making contact in one small area. This 

Figure 67 - Predicted polygons (right) and ground truth (left) for AOI 1 for the best-performing 
model trained with the Tversky loss function. Predicted polygons are colour-coded by status: light 
blue for unique matches, gray for undersegmented, brown for oversegmented, green for no 
match (false detection) and blue for ambiguously segmented. 

Figure 68 - Predicted polygons (right) and ground truth (left) for AOI 2 for the best-performing model 
trained with the Tversky loss function. Predicted polygons are colour-coded by status: light blue for 
unique matches, pink for undersegmented, red for oversegmented, and blue for no match (false 
detection). 
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may be addressed by experimenting with a postprocessing step consisting of morphological 
operations such as opening (a small erosion followed by a small dilation). This is recommended 
for a future exercise. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 69 - Predicted polygons (right) and ground truth (left) for AOI 3 for the best-performing 
model trained with the Tversky loss function. Predicted polygons are colour-coded by status: light 
blue for unique matches, pink for undersegmented, red for oversegmented, and blue for no 
match (false detection). 

Figure 70 - Predicted polygons (right) and ground truth (left) for  AOI 4 for the best-performing 
model trained with the Tversky loss function. Predicted polygons are colour-coded by status: light 
blue for unique matches, gray for undersegmented, brown for oversegmented, green for no match 
(false detection) and blue for ambiguously segmented. 
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In Figure 72 the missed building rate per AOI is shown for the Tversky model. The rates are 
comparable to the WBCE loss (slightly worse in the case of AOI 5 from 4% to 8%). The sharper 
footprints from this loss function do not come at a significant cost in sensitivity to small 
buildings. 

 

 

 

 

 

 

 

 

Figure 73 displays the overall status distribution of the predicted building polygons. The 
proportion of unique matches improves to around 43% of all polygons, while the proportion of 
undersegmented buildings drops to around 27%. Just over a quarter of the predicted buildings 
have no match (false positives) which is a minor increase with respect to the WBCE loss, but 
we can see that the majority of these are very small and could also be eliminated by placing a 
size cut at the level of a few squared metres. 

Figure 71 - Predicted polygons (right) and ground truth (left) for  AOI 5 for the best-performing 
model trained with the Tversky loss function. Predicted polygons are colour-coded by status: 
light blue for unique matches, pink for undersegmented, red for oversegmented, and blue for no 
match (false detection). 

Figure 72 - Fraction of missed buildings by  AOI for the best-performing Tversky model.  
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In Figures 74-78 the average IoU distributions are shown for the predicted polygons for the 
Tversky loss. There is a noticeable improvement in quality for the uniquely matching building 
polygons with respect to the WBCE loss. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 73 – Global status distributions for the best-performing Tversky loss model. 

Figure 74 - Predicted polygons which uniquely intersect true polygons in  AOI 1, coloured by 
average IoU with the buildings they intersect. Undersegmented buildings appear as purple-
blue and occur where a single predicted polygon erroneously contains multiple true buildings. 
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Figure 75 - Predicted polygons which uniquely intersect true polygons in AOI 2, coloured by 
average IoU with the buildings they intersect. 

Figure 76 - Predicted polygons which uniquely intersect true polygons in AOI 3, coloured by average 
IoU with the buildings they intersect. 
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Figure 77 - Predicted polygons which uniquely intersect true polygons in AOI 4, coloured by 
average IoU with the buildings they intersect. 

Figure 78 - Predicted polygons which uniquely intersect true polygons in AOI 5, coloured by 
average IoU with the buildings they intersect. 
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In Figure 79 we observe the IoU distributions for matching predicted polygons for the Tversky 
loss. A larger fraction of the total buildings is concentrated around the peak IoU values of 70-
80% for each AOI, with the exception of AOI 2 where oversegmentation excludes most of the 
buildings. We can conclude from this, and the missing building rates being relatively 
unchanged, that the Tversky loss is superior at the polygon level and is recommended over the 
WBCE loss for generating future results.  

 

 

 

 

 

 

 

 

 

3.3.5.8 Polygon- level results – DeepResUNet + all enhancements + Dice loss 

The final polygon-level results to be presented are for the best-performing model (with all 
architectural enhancements) for the Dice loss function. 

 

In Figures 80-84 colour-coded representations of the predicted polygons are again shown. The 
degree and extent of undersegmentation is reduced with respect to the Tversky loss (most 
undersegmented cases are mismerged polygons with a very small degree of contact). This 
comes at the cost of more frequent oversegmentation. 

 

 

 

 

 

Figure 79 - IoU distributions for predicted polygons which match at least one true polygon per  AOI 
for the best-performing model trained with the Tversky loss function. 
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Figure 80 - - Predicted polygons (right) and ground truth (left) for AOI 1 for the best-
performing model trained with the Dice loss function. Predicted polygons are colour-coded by 
status: light blue for unique matches, gray for undersegmented, brown for oversegmented, 
green for no match (false detection) and blue for ambiguously segmented. 

Figure 81 - Predicted polygons (right) and ground truth (left) for AOI 2 for the best-performing 
model trained with the Dice loss function. Predicted polygons are colour-coded by status: light 
blue for unique matches, pink for undersegmented, red for oversegmented, and blue for no match 
(false detection). 
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The building footprints tend to be more conservative with respect to the Tversky model, and in 
the cases of unique matches are often of higher quality. This traces back to the relative penalty 
of false positives being higher in the loss function. The frequency of false detections is also 
noticeably smaller, which may make this loss function a more pragmatic choice when 
searching for high-quality footprints of unknown buildings that are not particularly atypical 
(and thus prone to oversegmentation). 

 

 

 

 

 

 

 

 

 

 

 

Figure 82 - Predicted polygons (right) and ground truth (left) for AOI 3 for the best-performing model 
trained with the Dice loss function. Predicted polygons are colour-coded by status: light blue for 
unique matches, pink for undersegmented, red for oversegmented, and blue for no match (false 
detection). 

Figure 83 - Predicted polygons (right) and ground truth (left) for AOI 4 for the best-
performing model trained with the Dice loss function. Predicted polygons are colour-coded 
by status: light blue for unique matches, gray for undersegmented, brown for 
oversegmented, green for no match (false detection) and blue for ambiguously segmented. 
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In Figure 85 we can observe the cost of the more conservative nature of the Dice loss in 
flagging buildings as an increase in the missed building rate. For the typical AOIs this is in the 
10-14% range, with the majority of these being smaller buildings. For identifying smaller 
buildings, it may be then more appropriate to use the model trained with the Tversky loss, 
although this will also result in a higher frequency of false detections. 

 

 

 

Figure 84 - Predicted polygons (right) and ground truth (left) for AOI 5 for the best-performing model 
trained with the Dice loss function. Predicted polygons are colour-coded by status: light blue for 
unique matches, pink for undersegmented, red for oversegmented, and blue for no match (false 
detection). 

Figure 85 - Fraction of missed buildings by AOI for the best-performing Dice model. 
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Figure 86 displays the global status distribution for predicted polygons. The frequency of 
unique matches with ground truth is around 48%, a 5% improvement on the Tversky loss. The 
fraction of buildings undersegmented falls to around 23%, while the fraction oversegmented 
increases to around 6% where the Tversky model produced around 3%. The fraction of false 
detections falls to around 21% from around 28% with the Tversky loss. This situation would for 
most use-cases render the Dice loss superior, provided the higher rate of missed detections is 
tolerable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 86 - Global status distributions for the best-performing Dice loss model. 

Figure 87 - Predicted polygons which uniquely intersect true polygons in AOI 1, coloured by 
average IoU with the buildings they intersect. 
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Figures 86-90 again show the quality of those predicted polygons which uniquely intersect one 
or more ground truth buildings. The quality of the footprints measured by the IoU is a 
moderate visible improvement on the predictions of the Tversky model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 88 - Predicted polygons which uniquely intersect true polygons in AOI 2, coloured by 
average IoU with the buildings they intersect. 

 

Figure 89 - Predicted polygons which uniquely intersect true polygons in AOI 3, coloured by average IoU 
with the buildings they intersect. 
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Figure 91 - Predicted polygons which uniquely intersect true polygons in AOI 5, coloured by 
average IoU with the buildings they intersect. 

 

Figure 92 provides a final summary of the footprint quality for the Dice loss per AOI. The 
majority of detected buildings are concentrated in the 70-90% IoU region for each AOI to a 
more pronounced extent than with the Tversky loss. Together with the status distribution 

Figure 90 - Predicted polygons which uniquely intersect true polygons in AOI 4, coloured by 
average IoU with the buildings they intersect. 
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depicted in 85, this might be taken to mean that both the qualitative nature of detected 
polygons and the quantitative accuracy of their footprints are better, with the caveat that the 
probability to miss buildings is moderately higher for this loss function. 

 

 

 

 

 

 

 

 

 

 

3.4 EXPERIMENTS WITH TRUE ORTOPHOTO IMAGERY 

In the experiments conducted, segmentation and polygon level metrics were calculated for the 
five AOIs also using the 2019 (winter) true orthophoto resampled from 10cm spatial resolution 
to 20cm. 

Here we observed very minor, percent-level performance degradations. The reasons for this 
are likely a combination of three factors: 

- The RGB distributions in the training images used from this orthophoto are 
considerably different due to the winter conditions. Since the majority of the training 
data is from the summer captures (there was only one winter true orthophoto), it’s 
expected that the model performance will degrade in winter. 

- Small deviations from the perpendicular zenith angle may actually be beneficial for a 
segmentation model for certain buildings in that it may learn to pick up on cues from 
partially visible facades such as windows. 

- The ground truth used to evaluate the testing AoIs was only available for 2018, and 
there are a handful of visible changes to buildings that occur between 2018 and 2019. 
As such these will not be correctly evaluated this will introduce spurious performance 
losses.  

It may be worthwhile for a future experiment to balance the proportion of true and regular 
orthophotos and compare captures from similar seasonal conditions to make a fair and 

Figure 92 - IoU distribution per AOI for the best-performing model trained with the Dice loss 
function. 
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definitive evaluation of which provides the best performance for segmentation. Minimal 
occlusion by trees and vegetation in winter conditions will in both cases likely lead to an 
improvement in footprint delineation in some cases.  

To a first approximation based on the experiments carried out above it’s reasonable to assume 
that any performance gains from true orthophotos (evaluated fairly against their regular 
cousins) will be minor. 
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4 Generating and improving results 

All of the models and machinery used to carry out the analysis in section 3, along with the 
capability of training and running inference with new models and datasets is included in the 
tool provided to ACT. 

Building detection and segmentation can be accomplished by running inference on GeoTIFF 
raster data from different years or regions. Change detection is possible by comparing these 
results, particularly at the polygon level, in GeoICT tools such as QGIS. 

4.1 TRAINING  

The possibility to train new models is included in the Extopia segmentation framework as a 
convenient script which allows one to enable and disable each of the architectural 
enhancements implemented, and tune model hyperparameters to obtain potentially even 
better results. 

4.2 INFERENCE 

One may define new datasets for inference by providing RGB GeoTIFF raster data. The 
provided framework includes a script which performs inference with the best currently trained 
model with a given loss function. 

4.3 POLYGONISATION 

Polygonisation is achieved using GDAL’s 4-connectedness polygonization algorithm. The tool 
includes a script which runs this on large segmentation raster datasets with a given 
binarisation threshold. 

4.4 EVALUATION OF RESULTS 

The generation of image- and polygon-level segmentation quality metrics, including all of the 
plots and images shown above, is included in the framework as an evaluation notebook which 
may be used to benchmark new models when new data becomes available. 

4.5 CORRECTING ERRONEOUS RESULTS 

One may improve erroneous results by providing accurate ground truth footprints for the 
regions which were poorly segmented and retraining a model with these corrections included. 
These must take the form of an ESRI shapefile with the ground truth data and the appropriate 
RGB orthophotos in GeoTIFF format. 
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5 Conclusion 

As a general conclusion to summarize the above analysis we can state the following: 
 

As can be expected the result of the segmentation for 20cm resolution are considerably better 
than the results obtained with the 1m resolution data. The 1m spatial resolution is not 
sufficient for distinguishing individual building polygons except for those cases where buildings 
are well-separated. When this is the case the footprint quality is mediocre and tends to 
overexaggerate building sizes. The additional processing time for running the models at 20 cm 
resolution is not prohibitive seen the fact that the 20cm inference on the country of 
Luxembourg was possible in approximately 12 hours on the ACT hardware.  

Standard Image augmentations (Random rotation, Random horizontal flip, Random 
homogenous RGB offset, Random affine transformations, Random gaussian noise, Random 
gaussian blur, Random contrast shifts, Random brightness shifts) in addition to a data-driven 
PCA-based colour augmentation helped to improve both the quality of the segmentation 
(~15% lower loss values) and the robustness of the model.   

Several algorithmic improvements were made to the base DeepRESUNET model. The 
additional architectural elements (spatial attention gates, deep supervision, multi-scale 
pooling and CBAM modules on each residual block), all improved the segmentation results. 
The final results were hence generated using a model trained with the Luxembourg (Belair) 
training sample with all of the above algorithmic enhancements applied.   
 
Experiments were conducted with 3 different loss functions.  Weighted Binary Cross Entropy 
(WBCE), Tversky and Dice.   

• The Weighted Binary Cross Entropy is the simplest of the three and is considered as 
the baseline. 

• The Tversky loss function brings a qualitative improvement on the weighted binary 
cross entropy function, particularly in the reduction of false positives with the 
precision values touching the 80% mark.  Undersegmentation remains the most 
prominent error for this loss function, but the rate at which it occurs is visibly less than 
for the WBCE. The sharper footprints from this loss function do not come at a 
significant cost in sensitivity to small buildings. On the downside, some stability issues 
were observed in the training. 

• The Dice loss functions trades away the false positives for false negatives as compared 

to Tversky. This can be traced back to the equal weighting factors for these types of 

error in this loss function. As a result, for the more typical AOIs most building 

footprints are more accurate and not exaggerated. Smaller, isolated false positives are 

also much less frequent. On the downside as compared to the Tversky results, a larger 

fraction is missed. 

From the above it is clear that both Tversky and Dice outperform WBCE.  Which one to select  
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depends on the specific use case. Tversky is the best choice if the idea is to map the maximum 
of uncharted buildings and obtain reasonable-quality footprints since its segmentation is less 
conservative than Dice. As a consequence, there will be also more false positives.  Dice on the 
other hand gives the best possible footprints and much less false positives but will also miss 
more buildings.  
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